skip to main content


Search for: All records

Creators/Authors contains: "Weiss, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Does interdisciplinary collaboration make a difference when it comes to communicating engineering concepts to community audiences? This research focuses on the effect of communication strategies on community attitudes toward engineering research. Two cohorts of four academic researchers each, representing eight different disciplinary backgrounds (aviation planning, cancer research, math education, musicology, chemical/biomolecular engineering, material science, soil science, and theater) developed research communication outputs for the public by creating: 1) an individual video presenting their research through the lens of their discipline alone; and 2) a convergent video where they collaboratively discussed their research with others in their cohort around a common theme, integrating all of their disciplinary lenses. Using a panel of respondents (n = 2,938) procured through Qualtrics, and purposefully recruited to create a diverse sample in age and racial/ethnic background, the research team randomly assigned respondents to watch one of three video treatments: one individual video, multiple individual videos, or a convergent video. Then, respondents answered a series of questions about their interest and knowledge of several STEM topics, both before and after watching the video(s). This retrospective pre/post questionnaire technique helps to alleviate response-shift bias present in self-assessed changes in learning attitudes. Our findings show that collaborative presentation videos increased self-reported audience interest in engineering, and perceptions of disciplinary relatedness more than the non-collaborative, individual presentations made by the same researchers. These results suggest a beneficial role for collaborative communication strategies to foster interest in engineering among public audiences, even among people without a background in STEM. Further, collaborative communication led to an increased sense of relatedness among different disciplines, which may be useful for effective public research communication about interdisciplinary engineering projects. 
    more » « less
  2. null (Ed.)
    Abstract Quantized vortices appear in physical systems from superfluids and superconductors to liquid crystals and high energy physics. Unlike their scalar cousins, superfluids with complex internal structure can exhibit rich dynamics of decay and even fractional vorticity. Here, we experimentally and theoretically explore the creation and time evolution of vortex lines in the polar magnetic phase of a trapped spin-1 87 Rb Bose–Einstein condensate. A process of phase-imprinting a nonsingular vortex, its decay into a pair of singular spinor vortices, and a rapid exchange of magnetic phases creates a pair of three-dimensional, singular singly-quantized vortex lines with core regions that are filled with atoms in the ferromagnetic phase. Atomic interactions guide the subsequent vortex dynamics, leading to core structures that suggest the decay of the singly-quantized vortices into half-quantum vortices. 
    more » « less
  3. ABSTRACT

    We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288 b has a period of $2.699835^{+0.000004}_{-0.000003}$ d, a radius of 5.24 ± 0.09 R⊕, and a mass of 42 ± 3 M⊕, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-yr-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn–mass planet on a moderately eccentric orbit ($0.13^{+0.07}_{-0.09}$) with a minimum mass of 84 ± 7 M⊕ and a period of $443^{+11}_{-13}$ d. The five sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors.

     
    more » « less
  4. We report the discovery of a Neptune-like planet (LP 714-47 b, P = 4.05204 d, m b = 30.8 ± 1.5 M ⊕ , R b = 4.7 ± 0.3 R ⊕ ) located in the “hot Neptune desert”. Confirmation of the TESS Object of Interest (TOI 442.01) was achieved with radial-velocity follow-up using CARMENES, ESPRESSO, HIRES, iSHELL, and PFS, as well as from photometric data using TESS, Spitzer , and ground-based photometry from MuSCAT2, TRAPPIST-South, MONET-South, the George Mason University telescope, the Las Cumbres Observatory Global Telescope network, the El Sauce telescope, the TÜBİTAK National Observatory, the University of Louisville Manner Telescope, and WASP-South. We also present high-spatial resolution adaptive optics imaging with the Gemini Near-Infrared Imager. The low uncertainties in the mass and radius determination place LP 714-47 b among physically well-characterised planets, allowing for a meaningful comparison with planet structure models. The host star LP 714-47 is a slowly rotating early M dwarf ( T eff = 3950 ± 51 K) with a mass of 0.59 ± 0.02 M ⊙ and a radius of 0.58 ± 0.02 R ⊙ . From long-term photometric monitoring and spectroscopic activity indicators, we determine a stellar rotation period of about 33 d. The stellar activity is also manifested as correlated noise in the radial-velocity data. In the power spectrum of the radial-velocity data, we detect a second signal with a period of 16 days in addition to the four-day signal of the planet. This could be shown to be a harmonic of the stellar rotation period or the signal of a second planet. It may be possible to tell the difference once more TESS data and radial-velocity data are obtained. 
    more » « less